The plant phenolic compound p-coumaric acid represses gene expression in the Dickeya dadantii type III secretion system.

نویسندگان

  • Yan Li
  • Quan Peng
  • Dija Selimi
  • Qi Wang
  • Amy O Charkowski
  • Xin Chen
  • Ching-Hong Yang
چکیده

The type III secretion system (T3SS) is a major virulence factor in many gram-negative bacterial pathogens. This secretion system translocates effectors directly into the cytosol of eukaryotic host cells, where the effector proteins facilitate bacterial pathogenesis by interfering with host cell signal transduction and other cellular processes. Plants defend themselves against bacterial pathogens by recognizing either the type 3 effectors or their actions and initiating a cascade of defense responses that often results in programmed cell death of the plant cell being attacked. Here we show that a plant phenolic compound, p-coumaric acid (PCA), represses the expression of T3SS genes of the plant pathogen Dickeya dadantii, suggesting that plants can also defend against bacterial pathogens by manipulating the expression of the T3SS. PCA repressed the expression of T3SS regulatory genes through the HrpX/Y two-component system, a core regulator of the T3SS, rather than through the global regulator GacS/A, which indirectly regulates the T3SS. A further analysis of several PCA analogs suggests that the para positioning of the hydroxyl group in the phenyl ring and the double bond of PCA may be important for its biological activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Type III Secretion System Genes of Dickeya dadantii 3937 Are Induced by Plant Phenolic Acids

BACKGROUND Dickeya dadantii is a broad-host range phytopathogen. D. dadantii 3937 (Ech3937) possesses a type III secretion system (T3SS), a major virulence factor secretion system in many gram-negative pathogens of plants and animals. In Ech3937, the T3SS is regulated by two major regulatory pathways, HrpX/HrpY-HrpS-HrpL and GacS/GacA-rsmB-RsmA pathways. Although the plant apoplast environment,...

متن کامل

Regulatory mechanisms of exoribonuclease PNPase and regulatory small RNA on T3SS of Dickeya dadantii.

The type III secretion system (T3SS) is an essential virulence factor for many bacterial pathogens. Polynucleotide phosphorylase (PNPase) is one of the major exoribonucleases in bacteria and plays important roles in mRNA degradation, tRNA processing, and small RNA (sRNA) turnover. In this study, we showed that PNPase downregulates the transcription of T3SS structural and effector genes of the p...

متن کامل

The flagellar sigma factor fliA is required for Dickeya dadantii virulence.

The genome sequence of the Enterobacteriaceae phytopathogen Dickeya dadantii (formerly Erwinia chrysanthemi) revealed homologs of genes required for a complete flagellar secretion system and one flagellin gene. We found that D. dadantii was able to swim and swarm but that ability to swarm was dependent upon both growth media and temperature. Mutation of the D. dadantii fliA gene was pleiotropic...

متن کامل

Genome-Wide Identification of HrpL-Regulated Genes in the Necrotrophic Phytopathogen Dickeya dadantii 3937

BACKGROUND Dickeya dadantii is a necrotrophic pathogen causing disease in many plants. Previous studies have demonstrated that the type III secretion system (T3SS) of D. dadantii is required for full virulence. HrpL is an alternative sigma factor that binds to the hrp box promoter sequence of T3SS genes to up-regulate their expression. METHODOLOGY/PRINCIPAL FINDINGS To explore the inventory o...

متن کامل

The nucleoid-associated proteins H-NS and FIS modulate the DNA supercoiling response of the pel genes, the major virulence factors in the plant pathogen bacterium Dickeya dadantii

Dickeya dadantii is a pathogen infecting a wide range of plant species. Soft rot, the visible symptom, is mainly due to the production of pectate lyases (Pels) that can destroy the plant cell walls. Previously we found that the pel gene expression is modulated by H-NS and FIS, two nucleoid-associated proteins (NAPs) modulating the DNA topology. Here, we show that relaxation of the DNA in growin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 5  شماره 

صفحات  -

تاریخ انتشار 2009